

Major Learning Targets for This Grade

Meaning of Multiplication and Division					
Students will understand multiplication and division, as well as strategies for multiplication and division within 100.					
"I can build a model and draw a picture to solve problems involving multiplication and division."	"I can use the properties of multiplication and the relationship between multiplication and division."	"I can multiply and divide within 100 fluently using many strategies."			
Example Tack:					

Example Task

There are 24 desks in the classroom. If the teacher puts 6 desks in each row, how many rows are there? The task can be solved by:

Drawing an array model	Drawing a picture of equal groups	Reasoning mentally, verbally, or in writing
		"I know 6 and 6 are 12. 12 and 12 are 24.
	000000 (00000) (00000) (00000)	Therefore, there are 4 groups of 6 desks
		that give a total of 24 desks in the
		classroom."

Developing	Understanding	of Fractions
------------	---------------	--------------

Students will understand fractions as numbers, especially unit fractions.			
"I can partition (divide) shapes into two,	"I can explain equivalence of	"I can draw, name, and see equivalent	
three, four, six, and eight equal parts;	fractions and compare fractions by	(same (size factions named differently)	
name and use unit fractions to build	reasoning about their size."	on a number line model."	
more fractions."			

reters to the same size piece (sixths). If we have only 2 of those pieces, we have fewer pieces than if we have 5 of those pieces. The picture illustrates this comparison because the shaded area representing 2/6 is less than the shaded area representing 5/6. So 2/6 < 5/6."

Area and Perimeter

Students will understand the concepts of rectangular area and relate area to multiplication and addition.

"I can measure an area by	"I can find the area of a	"I can find the total area of a polygon by splitting it
counting unit squares."	rectangle by multiplying the side	into smaller rectangles and then adding the area of
	lengths."	all the smaller rectangles."

Example Task:

There are many ways to find the area of this figure.

- 1. Try to find as many ways as you can to split this figure into exactly 3 smaller rectangles. Be sure that none of the smaller rectangles overlap and the 3 smaller rectangles cover the entire figure.
- 2. For every example you found, write an expression that represents the area as the sum of the 3 rectangles. Find the total area of this figure.

Expected Behaviors in Math Class

Students will ...

- Consider available tools to help them solve problems and deepen understanding (including hands-on tools and technology).
- Look for patterns and connections.
- Explain their thinking and their process for solving a problem.
- Make predictions and estimations.
- Decide if an answer is reasonable.
- Justify conclusions.
- Communicate ideas clearly verbally and in writing, using math vocabulary when appropriate.
- Apply mathematics to solve problems in everyday life.

How Can I Support My Student in This Course?

Access Google Classroom Regularly (if Applicable)

⇒Look at the Stream for daily announcements and a weekly schedule. ⇒View the Classwork for assignment information and support.

Encourage Multiple Strategies and Representations of the Problem

⇒Ask your student to solve the problem in different ways.

⇒Encourage the use of different representations (e.g., symbols, words, or pictures/visuals), and have them make connections between representations.

Ask Questions & Encourage Your Student to Ask Questions

⇒When your student is stuck, don't simply tell them the correct answer. Ask questions like:

- "What is the question in the problem/task?"
- "What do you understand/know from the task?"
- "How do you know?" Listen while your student explains their mathematical reasoning and ask, "Does your answer make sense?" based on the context of the problem or task.

⇒Encourage your student to write down questions to bring to their teacher or peer the next day.

Value Mistakes

⇒Students are learning when they are making mistakes; create an environment where your student feels comfortable making a mistake and learning from it.

Acknowledge Effort over Answers and Speed

⇒Celebrate how hard your student is working, whether their answer is correct or not. ⇒When your student is stuck, remind them that learning can be challenging, and if they continue to practice and work hard, they will improve.

For more information, visit <u>scusd.edu/math</u> or contact <u>Mikila-Fetzer@scusd.edu</u>, Director of PL, Science, EdTech, PE, & Mathematics SCUSD's Equity & Access Guiding Principle: All students are given an equal opportunity to graduate with the greatest number of postsecondary choices from the widest array of options.