

Math Common Core Standards

"Toward Greater Focus and Coherence"

Gr. 8 Professional Learning Session I

Agenda

- Setting the Stage
- II. The Characteristics of Learners
- III. Trying on the Math Break
- IV. Pre-Assessment
- V. Orientation to the Math Common Core Standards Lunch
- VI. Math Practices in Action
- VII. Collaborative Planning Time
- VIII. Reflection and Evaluation

Setting the Stage

- Rationale & Purpose
- Grant Expectations
- Smarter Balanced Update
- Workshop Norms

Strategic Plan 2010-14

Pillar One: Career and College Ready Students

Common Core Standards (CCS) Focus

The focus of the CCS is to guarantee that all students are college and career ready as they exit from high school.

Cautions: Implementing the CCSS is...

- Not about "gap analysis"
- Not about buying a text series
- Not a march through the standards
- Not about breaking apart each standard

Mathematical Understanding

Looks Like...

"One hallmark of mathematical understanding is the ability to justify, in a way appropriate to the student's mathematical maturity, *why* a particular mathematical statement is true or where a mathematical rule comes from."

Curriculum

Teaching & Learning

Domains

- Gr. 3-5: Number and Operations Fractions
- Gr. 6-7: Ratios and Proportional Reasoning & The Number System
- Gr. 8: Expressions and Equations & Functions
- Math & Science Practices

Math Practices	Science Practices
Make sense of problems and	Asking questions and defining
persevere in solving them	problems
Attend to precision	Obtaining, evaluating, and
	communicating information
Model with mathematics	Using mathematics and
	computational thinking

Grant Expectations

Focus Schools

- District PL: Nov. 6, Dec. 7, Feb. 22, & May 24
- On-site PL: Twice During the Year (When will be determined by each site)
- Monthly Coaching Support
- Pre-assessment
- 8 Hours of Common Planning
- Summer Institute: Date TBD

Non-Focus Schools

- District PL: Nov. 6, Dec. 7, Feb. 22, & May 24
- On-site PL: Twice During the Year (When will be determined by each site)
- Quarterly Coaching Support
- Pre-assessment

Smarter Balanced : A Balanced Assessment System

model curriculum units; educator training; professional development tools and resources; scorer training modules; and teacher collaboration tools.

http://www.smarterbalanced.org/smarter-balanced-assessments/#item

Workshop Norms

- Actively Engage (phones off or on "silent")
- Ask questions
- Share ideas
- •Learn with and from each other
- Focus on what we can do
- Have fun and celebrate!

Characteristics of Learners

What are your perceptions of an excellent reader?

What are your perceptions of an excellent math learner?

Trying on the Math

Dot Progressions

 Imagine what the picture looks like at 3 minutes How many dots will there be? How do you know? How will you build the picture?

At two minutes

At one minute

10 Minutes

Pre-Assessment

- Rationale
- Anonymous
- Make your code: The first 2 letters of your mother's maiden name and one more than your birth date (*day* only) Example: Maiden name: Gold Birthday: March 24, 1974 Code = GO25

Orientation to the CCSS

"Toward Greater Focus and Coherence"

Curriculum

Teaching & Learning

Practices in Math and Science

Mathematics

- Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.

Science

- 1. Adding questions and defining problems
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data

Practices in Math and Science

Mathematics

- 5. Use appropriate tools strategically
- 6. Attend to precision
- 7. Look for and make use of structure
- Look for and express regularity in repeated reasoning.

Science

- 5. Using mathematics and computational thinking
- 6. Constructing explanations and designing solutions
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information

Math Content Standards Format

- Domains are larger groups of related standards.
 Standards from different domains may sometimes be closely related.
- Clusters are groups of related standards. Note that standards from different clusters may sometimes be closely related, because mathematics is a connected subject.
- Standards define what students should understand and be able to do.

Format Example

Expressions and Equations

Understand the connections between proportional relationships, lines, and linear equations.

- 5. Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. *For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.*
 - 6. Use similar triangles to explain why the slope *m* is the same between any two distinct points on a non-vertical line in the coordinate plan; Derive the equation *y=mx* for a line through the origin and the equation *y=mx+b* for a line intercepting the vertical axis at *b.*

Cluster

	L	eari	ning	Prog	Jres:	sion A	cros	s Don	ains
K	1	2	3	4	5	6	7	8	9-12
Counting & Cardinality									
Number and Operations in Base Ten			Ratios and Proportional Relationships			Number &			
			Number and Operations – Fractions			The Number System			Quantity
Operations and Algebraic Thinking		Expressions and Equations			Algebra				
				Functions	Functions				
Geometry				Geometry					
Measurement and Data			Statistics and Probability			Statistics & Probability			

Math Instructional Shifts

- Focus
- Coherence
- Fluency
- Deep Understanding

Rigor

- Application
- Dual Intensity

Mathematics & Corresponding Science Practices

Mathematics Practices	Science Practices
Make sense of problems	Asking questions and
and persevere in solving	defining problems
them	
Attend to precision	Obtaining, evaluating,
	and communicating
	information
Model with mathematics	Using mathematics and
	computational thinking

- Silently, read Math Practice 1. Make Sense of Problems and Persevere in Solving Them
- Note 2-3 key ideas that struck you

- At your table:
 - –Paraphrase what the person before you shared
 - -Share 1 key idea
 - (first speaker will paraphrase the last speaker)

Connect Practice #1 back to the "Dot Progressions"

- Identify times when you were making sense of the problem
- Identify times when you were persevering
- What things prompted you to make sense of problems and persevere in solving them?
- What else is evident in Practice #1 that you did not identify from the Dot Progressions activity?

- Silently, read Math Practice #6: Attend to Precision
- Note 2-3 key ideas that struck you

- At your table:
 - Paraphrase what the person before you shared
 - –Share 1 key idea
 - (first speaker will paraphrase the last speaker)

Connect Practice #6 back to the "Dot Progressions"

- Identify times when you were attending to precision?
- What things prompted you to attend to precision?
- What else is evident in Practice #6 that you did not identify from the Dot Progressions activity?

- Silently, read Math Practice #4: Model with Mathematics
- Note 2-3 key ideas that struck you

- At your table:
 - Paraphrase what the person before you shared
 - –Share 1 key idea
 - (first speaker will paraphrase the last speaker)

Connect Practice #4 back to "Dot Progressions"

Definition of "Model"

Modeling with Mathematics

Not Modeling

Modeling

Jeremiah mowed lawns over the summer and saved \$120. He plans to spend \$6.50 per week going out to the movies.

Mrs. Smith tells her class the expression 120 – 6.5*m* describes the amount of money Jeremiah has after going to the movies *m* times. Explain whether you agree or disagree with Mrs. Smith. Henry and Jose are gaining weight for football. Henry weighs 205 pounds and is gaining 2 pounds per week. Jose weighs 195 pounds and is gaining 3 pounds per week. When will they weigh the same?

1 hour ~ Enjoy!

Math Practices in Action

Dot Progressions Continued...

At the beginning

At one minute

At two minutes

Collaborative Planning

To be continued on your released day at your site:

- Choose a standard that you will be teaching in the next few weeks.
- Collaboratively with your colleagues, build a lesson that:
 Demonstrates 1 or more of the focused <u>Math Practices</u>: 1, 4, 6.
- Use the "Planning Guide" document to clearly describe your lesson.
- Engage your students in this lesson before we meet again.

For our next whole-group session, please bring:

- Your completed "Planning Guide" document
- Evidence from the lesson
 - Samples of student work from 3 focal students

Resources

www.corestandards.org www.illustrativemathematics.org www.cmc-math.org www.achievethecore.org www.insidemathematics.org www.commoncoretools.me www.engageNY.org http://www.smarterbalanced.org/smarterbalanced-assessments/#item

Reflection and Evaluation

On the back of your evaluation form, please elaborate on Item #1 by answering the following question:

What is something that you know now about the Mathematics Common Core State Standards that you did not know when you got here this morning?